On the Roles of Implicitness, Realizability, Boundary Conditions and Artificial Dissipation in Multidimensional Two-Fluid Simulations with Interfacial Forces

نویسندگان

  • Robert F. Kunz
  • Sankaran Venkateswaran
چکیده

Abstract The authors’ recent research and experience related to several numerical aspects of multi-dimensional full-two-fluid modeling is summarized, with emphasis on formulation elements associated with the treatment of interfacial forces. Application interests in the areas of bubbly flow through ship propellers and in annular flows, both characterized by significant interface dynamics, have focused our development efforts on improving the accuracy and convergence characteristics of two-fluid Navier-Stokes codes which incorporate modeled terms for these forces. Four CFD formulation elements which address the presence of these momentum source terms are discussed including: 1) interfield and intervariable coupling (i.e. implicitness) of force model terms, 2) the formulation of interfacial force model sets that differentially and discretely satisfy realizability ( ), 3) the role of boundary conditions in obtaining stable, oscillation free solutions and 4) the formulation of artificial dissipation operators, with particular emphasis on cell-centered solution strategies. Staggered and cell-centered codes which solve the fully developed two-fluid system are used as demonstration platforms for several of the discretization strategies discussed. Results obtained with full-multi-fluid Navier-Stokes solvers are also used to demonstrate elements of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions

An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...

متن کامل

Non-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions

In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...

متن کامل

HALL AND LON-SLIP EFFECTS ON MAGNETO-MICROPOLAR FLUID WITH COMBINED FORCED AND FREE CONVECTION IN BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE WITH VISCOUS DISSIPATION

In this paper, we study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate by taking in to account the viscous dissipation effects. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using qu...

متن کامل

Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition

In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...

متن کامل

A Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method

Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000